Constructing Composite Likelihoods in General Random Fields

نویسنده

  • Sebastian Nowozin
چکیده

We propose a simple estimator based on composite likelihoods for parameter learning in random field models. The estimator can be applied to all discrete graphical models such as Markov random fields and conditional random fields, including ones with higher-order energies. It is computationally efficient because it requires only inference over treestructured subgraphs of the original graph, and it is consistent, that is, it asymptotically gives the optimal parameter estimate in the model class. We verify these conceptual advantages in synthetic experiments and demonstrate the difficulties encountered by popular alternative estimation approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Blocks: Composite Likelihood and Contrastive Divergence

Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper, we present a formal connection between the optimization of composite likelihoods and the well-known contrastive divergence algorithm. In particular, we show that composite likelihoods can be stochastically optimized b...

متن کامل

Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields

Gibbs random fields play an important role in statistics, however, the resulting likelihood is typically unavailable due to an intractable normalizing constant. Composite likelihoods offer a principled means to construct useful approximations. This paper provides a mean to calibrate the posterior distribution resulting from using a composite likelihood and illustrate its performance in several ...

متن کامل

Likelihoods and Parameter Priors for

We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equi...

متن کامل

Likelihoods and Parameter Priors for Bayesian Networks

We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equi...

متن کامل

Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models, unfolding models, latent class models with rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013